Copied to
clipboard

G = C3xC23.7D6order 288 = 25·32

Direct product of C3 and C23.7D6

direct product, metabelian, supersoluble, monomial

Aliases: C3xC23.7D6, C62.35D4, (C6xC12):6C4, (C2xC12):1C12, (C2xC62):2C4, (C22xC6):3C12, (C6xD4).24S3, (C6xD4).17C6, (C2xC12):1Dic3, C23.7(S3xC6), C6.D4:2C6, C32:8(C23:C4), C62.98(C2xC4), (C22xC6):3Dic3, C23:2(C3xDic3), (C22xC6).25D6, C22.3(C6xDic3), (C2xC62).10C22, C6.33(C6.D4), (C2xC4):(C3xDic3), C3:2(C3xC23:C4), (D4xC3xC6).11C2, (C2xC6).3(C3xD4), (C2xD4).3(C3xS3), (C2xC6).39(C2xC12), C6.15(C3xC22:C4), C22.2(C3xC3:D4), (C3xC6.D4):4C2, (C2xC6).43(C3:D4), (C22xC6).17(C2xC6), (C2xC6).24(C2xDic3), C2.5(C3xC6.D4), (C3xC6).66(C22:C4), SmallGroup(288,268)

Series: Derived Chief Lower central Upper central

C1C2xC6 — C3xC23.7D6
C1C3C6C2xC6C22xC6C2xC62C3xC6.D4 — C3xC23.7D6
C3C6C2xC6 — C3xC23.7D6
C1C6C22xC6C6xD4

Generators and relations for C3xC23.7D6
 G = < a,b,c,d,e,f | a3=b2=c2=d2=e6=1, f2=cb=bc, ab=ba, ac=ca, ad=da, ae=ea, af=fa, ebe-1=fbf-1=bd=db, fcf-1=cd=dc, ce=ec, de=ed, df=fd, fef-1=cde-1 >

Subgroups: 330 in 131 conjugacy classes, 42 normal (30 characteristic)
C1, C2, C2, C3, C3, C4, C22, C22, C22, C6, C6, C2xC4, C2xC4, D4, C23, C32, Dic3, C12, C2xC6, C2xC6, C2xC6, C22:C4, C2xD4, C3xC6, C3xC6, C2xDic3, C2xC12, C2xC12, C3xD4, C22xC6, C22xC6, C23:C4, C3xDic3, C3xC12, C62, C62, C62, C6.D4, C3xC22:C4, C6xD4, C6xD4, C6xDic3, C6xC12, D4xC32, C2xC62, C23.7D6, C3xC23:C4, C3xC6.D4, D4xC3xC6, C3xC23.7D6
Quotients: C1, C2, C3, C4, C22, S3, C6, C2xC4, D4, Dic3, C12, D6, C2xC6, C22:C4, C3xS3, C2xDic3, C3:D4, C2xC12, C3xD4, C23:C4, C3xDic3, S3xC6, C6.D4, C3xC22:C4, C6xDic3, C3xC3:D4, C23.7D6, C3xC23:C4, C3xC6.D4, C3xC23.7D6

Permutation representations of C3xC23.7D6
On 24 points - transitive group 24T586
Generators in S24
(1 3 5)(2 4 6)(7 11 9)(8 12 10)(13 15 17)(14 16 18)(19 23 21)(20 24 22)
(2 16)(4 18)(6 14)(7 21)(9 23)(11 19)
(7 21)(8 22)(9 23)(10 24)(11 19)(12 20)
(1 15)(2 16)(3 17)(4 18)(5 13)(6 14)(7 21)(8 22)(9 23)(10 24)(11 19)(12 20)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)
(1 23)(2 8 16 22)(3 21)(4 12 18 20)(5 19)(6 10 14 24)(7 17)(9 15)(11 13)

G:=sub<Sym(24)| (1,3,5)(2,4,6)(7,11,9)(8,12,10)(13,15,17)(14,16,18)(19,23,21)(20,24,22), (2,16)(4,18)(6,14)(7,21)(9,23)(11,19), (7,21)(8,22)(9,23)(10,24)(11,19)(12,20), (1,15)(2,16)(3,17)(4,18)(5,13)(6,14)(7,21)(8,22)(9,23)(10,24)(11,19)(12,20), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24), (1,23)(2,8,16,22)(3,21)(4,12,18,20)(5,19)(6,10,14,24)(7,17)(9,15)(11,13)>;

G:=Group( (1,3,5)(2,4,6)(7,11,9)(8,12,10)(13,15,17)(14,16,18)(19,23,21)(20,24,22), (2,16)(4,18)(6,14)(7,21)(9,23)(11,19), (7,21)(8,22)(9,23)(10,24)(11,19)(12,20), (1,15)(2,16)(3,17)(4,18)(5,13)(6,14)(7,21)(8,22)(9,23)(10,24)(11,19)(12,20), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24), (1,23)(2,8,16,22)(3,21)(4,12,18,20)(5,19)(6,10,14,24)(7,17)(9,15)(11,13) );

G=PermutationGroup([[(1,3,5),(2,4,6),(7,11,9),(8,12,10),(13,15,17),(14,16,18),(19,23,21),(20,24,22)], [(2,16),(4,18),(6,14),(7,21),(9,23),(11,19)], [(7,21),(8,22),(9,23),(10,24),(11,19),(12,20)], [(1,15),(2,16),(3,17),(4,18),(5,13),(6,14),(7,21),(8,22),(9,23),(10,24),(11,19),(12,20)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24)], [(1,23),(2,8,16,22),(3,21),(4,12,18,20),(5,19),(6,10,14,24),(7,17),(9,15),(11,13)]])

G:=TransitiveGroup(24,586);

On 24 points - transitive group 24T589
Generators in S24
(1 3 2)(4 5 6)(7 9 8)(10 11 12)(13 15 17)(14 16 18)(19 23 21)(20 24 22)
(1 14)(2 18)(3 16)(4 24)(5 22)(6 20)(7 13)(8 17)(9 15)(10 19)(11 23)(12 21)
(1 8)(2 9)(3 7)(13 16)(14 17)(15 18)
(1 8)(2 9)(3 7)(4 12)(5 10)(6 11)(13 16)(14 17)(15 18)(19 22)(20 23)(21 24)
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)
(1 10 17 19)(2 12 15 21)(3 11 13 23)(4 18 24 9)(5 14 22 8)(6 16 20 7)

G:=sub<Sym(24)| (1,3,2)(4,5,6)(7,9,8)(10,11,12)(13,15,17)(14,16,18)(19,23,21)(20,24,22), (1,14)(2,18)(3,16)(4,24)(5,22)(6,20)(7,13)(8,17)(9,15)(10,19)(11,23)(12,21), (1,8)(2,9)(3,7)(13,16)(14,17)(15,18), (1,8)(2,9)(3,7)(4,12)(5,10)(6,11)(13,16)(14,17)(15,18)(19,22)(20,23)(21,24), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24), (1,10,17,19)(2,12,15,21)(3,11,13,23)(4,18,24,9)(5,14,22,8)(6,16,20,7)>;

G:=Group( (1,3,2)(4,5,6)(7,9,8)(10,11,12)(13,15,17)(14,16,18)(19,23,21)(20,24,22), (1,14)(2,18)(3,16)(4,24)(5,22)(6,20)(7,13)(8,17)(9,15)(10,19)(11,23)(12,21), (1,8)(2,9)(3,7)(13,16)(14,17)(15,18), (1,8)(2,9)(3,7)(4,12)(5,10)(6,11)(13,16)(14,17)(15,18)(19,22)(20,23)(21,24), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24), (1,10,17,19)(2,12,15,21)(3,11,13,23)(4,18,24,9)(5,14,22,8)(6,16,20,7) );

G=PermutationGroup([[(1,3,2),(4,5,6),(7,9,8),(10,11,12),(13,15,17),(14,16,18),(19,23,21),(20,24,22)], [(1,14),(2,18),(3,16),(4,24),(5,22),(6,20),(7,13),(8,17),(9,15),(10,19),(11,23),(12,21)], [(1,8),(2,9),(3,7),(13,16),(14,17),(15,18)], [(1,8),(2,9),(3,7),(4,12),(5,10),(6,11),(13,16),(14,17),(15,18),(19,22),(20,23),(21,24)], [(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24)], [(1,10,17,19),(2,12,15,21),(3,11,13,23),(4,18,24,9),(5,14,22,8),(6,16,20,7)]])

G:=TransitiveGroup(24,589);

63 conjugacy classes

class 1 2A2B2C2D2E3A3B3C3D3E4A4B4C4D4E6A6B6C···6Q6R···6AE12A···12H12I···12P
order1222223333344444666···66···612···1212···12
size11222411222412121212112···24···44···412···12

63 irreducible representations

dim11111111112222222222224444
type+++++--++
imageC1C2C2C3C4C4C6C6C12C12S3D4Dic3Dic3D6C3xS3C3:D4C3xD4C3xDic3C3xDic3S3xC6C3xC3:D4C23:C4C23.7D6C3xC23:C4C3xC23.7D6
kernelC3xC23.7D6C3xC6.D4D4xC3xC6C23.7D6C6xC12C2xC62C6.D4C6xD4C2xC12C22xC6C6xD4C62C2xC12C22xC6C22xC6C2xD4C2xC6C2xC6C2xC4C23C23C22C32C3C3C1
# reps12122242441211124422281224

Matrix representation of C3xC23.7D6 in GL4(F7) generated by

2000
0200
0020
0002
,
5103
5136
0010
2560
,
0145
1035
0010
0006
,
6000
0600
0060
0006
,
2443
3125
2223
0002
,
0563
5502
2566
2253
G:=sub<GL(4,GF(7))| [2,0,0,0,0,2,0,0,0,0,2,0,0,0,0,2],[5,5,0,2,1,1,0,5,0,3,1,6,3,6,0,0],[0,1,0,0,1,0,0,0,4,3,1,0,5,5,0,6],[6,0,0,0,0,6,0,0,0,0,6,0,0,0,0,6],[2,3,2,0,4,1,2,0,4,2,2,0,3,5,3,2],[0,5,2,2,5,5,5,2,6,0,6,5,3,2,6,3] >;

C3xC23.7D6 in GAP, Magma, Sage, TeX

C_3\times C_2^3._7D_6
% in TeX

G:=Group("C3xC2^3.7D6");
// GroupNames label

G:=SmallGroup(288,268);
// by ID

G=gap.SmallGroup(288,268);
# by ID

G:=PCGroup([7,-2,-2,-3,-2,-2,-2,-3,84,365,850,2524,9414]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^3=b^2=c^2=d^2=e^6=1,f^2=c*b=b*c,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,e*b*e^-1=f*b*f^-1=b*d=d*b,f*c*f^-1=c*d=d*c,c*e=e*c,d*e=e*d,d*f=f*d,f*e*f^-1=c*d*e^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<